If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to
$\frac{\pi }{4} - \alpha $
$\frac{{3\pi }}{4} - \alpha $
$\frac{\pi }{8} - \frac{\alpha }{2}$
$\frac{{3\pi }}{8} - \frac{\alpha }{2}$
$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $
If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
Prove that $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$
$\sin 4\theta $ can be written as
$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $