If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to
$\frac{\pi }{4} - \alpha $
$\frac{{3\pi }}{4} - \alpha $
$\frac{\pi }{8} - \frac{\alpha }{2}$
$\frac{{3\pi }}{8} - \frac{\alpha }{2}$
$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $
If $x + \frac{1}{x} = 2\,\cos \theta ,$ then ${x^3} + \frac{1}{{{x^3}}} = $
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$
The value of $\cos \,\frac{\pi }{7}\,\cos \,\frac{{2\pi }}{7}\,\cos \,\frac{{3\pi }}{7}$ is