- Home
- Standard 11
- Mathematics
If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to
$\frac{\pi }{4} - \alpha $
$\frac{{3\pi }}{4} - \alpha $
$\frac{\pi }{8} - \frac{\alpha }{2}$
$\frac{{3\pi }}{8} - \frac{\alpha }{2}$
Solution
(a) Since $\sin \beta = \frac{1}{{\sqrt {10} }}$
$\Rightarrow \tan \beta = \frac{1}{3}$
==> $\tan 2\beta = \frac{{2\tan \beta }}{{1 – {{\tan }^2}\beta }} = \frac{3}{4}$
$\therefore \tan (\alpha + 2\beta ) = \frac{{\frac{1}{7} + \frac{3}{4}}}{{1 – \frac{1}{7}.\frac{3}{4}}} = \frac{{25}}{{25}} = 1$
Now, $0 < \beta < \frac{\pi }{2}$ and $\tan 2\beta = \frac{3}{4} > 0$ both
==> $0 < 2\beta < \frac{\pi }{2}$.
Again,$0 < \alpha < \frac{\pi }{2}$ and $0 < 2\beta < \frac{\pi }{2}$ both
==> $0 < \alpha + 2\beta < \pi $
Thus, $0 < \alpha + 2\beta < \pi $ and $\tan (\alpha + 2\beta ) = 1$ both
==> $\alpha + 2\beta = \frac{\pi }{4} $
$\Rightarrow 2\beta = \frac{\pi }{4} – \alpha $.