If $cos A = {3\over 4} , $ then $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $

  • A

    $7$

  • B

    $8$

  • C

    $11$

  • D

    None of these

Similar Questions

The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is

$\tan 5x\tan 3x\tan 2x = $

If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $

The expression $\frac{{{{\tan }^2}20^\circ  - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to

$2\cos x - \cos 3x - \cos 5x = $