3.Trigonometrical Ratios, Functions and Identities
hard

If $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ and $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ then  ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ is equal to

A

$2{a^2}$

B

$2{a^{1/3}}$

C

$2{a^{2/3}}$

D

$2{a^3}$

Solution

(c) Adding and subtracting the given relation, we get 

$(m + n) = a{\cos ^3}\alpha + 3a\cos \alpha \,{\sin ^2}\alpha $ $ + 3a{\cos ^2}\alpha .\sin \alpha  + a{\sin ^3}\alpha $

$ = a{(\cos \alpha + \sin \alpha )^3}$ 

and similarly $(m – n) = a\,\,{(\cos \alpha – \sin \alpha )^3}$ 

Thus, ${(m + n)^{2/3}} + {(m – n)^{2/3}}$ 

$ = {a^{2/3}}{\{ \cos \alpha + \sin \alpha )^2} + {(\cos \alpha – \sin \alpha )^2}\} $ 

$ = {a^{2/3}}\{ 2({\cos ^2}\alpha + {\sin ^2}\alpha )\} = 2{a^{2/3}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.