3.Trigonometrical Ratios, Functions and Identities
hard

If $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ then the value of $k$ is

A

$\sqrt {1 + {{\cos }^2}\alpha } $

B

$\sqrt {1 + {{\sin }^2}\alpha } $

C

$\sqrt {2 + {{\sin }^2}\alpha } $

D

$\sqrt {2 + {{\cos }^2}\alpha } $

Solution

(b) Let $u = \cos \theta \left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}$

==> ${(u – \sin \theta \cos \theta )^2} = {\cos ^2}\theta ({\sin ^2}\theta + {\sin ^2}\alpha )$ 

==> ${u^2}{\tan ^2}\theta – 2u\tan \theta + {u^2} – {\sin ^2}\alpha = 0$ 

Since tan $\theta $ is real, therefore 

==> $4{u^2} – 4{u^2}({u^2} – {\sin ^2}\alpha ) \ge 0$

$ \Rightarrow {u^2} – (1 + {\sin ^2}\alpha ) \le 0$ 

==> $|u|\, \le \sqrt {1 + {{\sin }^2}\alpha } $.  

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.