જો $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ એ મહતમ હોય તો $A$ ની કિમત મેળવો.
$\frac{\pi }{3}$
$\frac{\pi }{4}$
$\frac{\pi }{2}$
એકપણ નહિ.
સમીકરણ $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$ ના ભિન્ન કેટલા ઉકેલો મળે છે ?
જો $\sin 2\theta = \cos 3\theta $ અને $\theta $ એ લઘુકોણ હોય તો $\sin \theta $ મેળવો.
જો $1 + \cot \theta = {\rm{cosec}}\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =
જો $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, તો $\sin \theta = . . ..$