If $d$ is the distance between the centres of two circles, ${r_1},{r_2}$ are their radii and $d = {r_1} + {r_2}$, then

  • A

    The circles touch each other externally

  • B

    The circles touch each other internally

  • C

    The circles cut each other

  • D

    The circles are disjoint

Similar Questions

Answer the following by appropriately matching the lists based on the information given in the paragraph

Let the circles $C_1: x^2+y^2=9$ and $C_2:(x-3)^2+(y-4)^2=16$, intersect at the points $X$ and $Y$. Suppose that another circle $C_3:(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions :

$(i)$ centre of $C _3$ is collinear with the centres of $C _1$ and $C _2$

$(ii)$ $C _1$ and $C _2$ both lie inside $C _3$, and

$(iii)$ $C _3$ touches $C _1$ at $M$ and $C _2$ at $N$.

Let the line through $X$ and $Y$ intersect $C _3$ at $Z$ and $W$, and let a common tangent of $C _1$ and $C _3$ be a tangent to the parabola $x^2=8 \alpha y$.

There are some expression given in the $List-I$ whose values are given in $List-II$ below:

$List-I$ $List-II$
$(I)$ $2 h + k$ $(P)$ $6$
$(II)$ $\frac{\text { Length of } ZW }{\text { Length of } XY }$ $(Q)$ $\sqrt{6}$
$(III)$ $\frac{\text { Area of triangle } MZN }{\text { Area of triangle ZMW }}$ $(R)$ $\frac{5}{4}$
$(IV)$ $\alpha$ $(S)$ $\frac{21}{5}$
  $(T)$ $2 \sqrt{6}$
  $(U)$ $\frac{10}{3}$

($1$) Which of the following is the only INCORRECT combination?

$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$

($2$) Which of the following is the only CORRECT combination?

$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2019]

Let $C_1$ and $C_2$ be the centres of the circles $x^2 + y^2 -2x -2y -2 = 0$ and $x^2 + y^2 - 6x-6y + 14 = 0$ respectively. If $P$ and $Q$ are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral $PC_1QC_2$ is ............. $\mathrm{sq. \, units}$

  • [JEE MAIN 2019]

The equation of director circle of the circle ${x^2} + {y^2} = {a^2},$ is 

The radical centre of three circles described on the three sides of a triangle as diameter is

The number of common tangents to the circles ${x^2} + {y^2} - x = 0,\,{x^2} + {y^2} + x = 0$ is