If $d$ is the distance between the centres of two circles, ${r_1},{r_2}$ are their radii and $d = {r_1} + {r_2}$, then

  • A

    The circles touch each other externally

  • B

    The circles touch each other internally

  • C

    The circles cut each other

  • D

    The circles are disjoint

Similar Questions

The centre of the circle, which cuts orthogonally each of the three circles ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0,$ ${x^2} + {y^2} - x + 22y + 3 = 0$ is

The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:

  • [JEE MAIN 2014]

The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$ touch each other. The equation of their common tangent is

If ${x^2} + {y^2} + px + 3y - 5 = 0$ and ${x^2} + {y^2} + 5x$ $ + py + 7 = 0$ cut orthogonally, then $p$ is

The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$