The condition of the curves $a{x^2} + b{y^2} = 1$and $a'{x^2} + b'{y^2} = 1$ to intersect each other orthogonally, is

  • A

    $\frac{1}{a} - \frac{1}{{a'}} = \frac{1}{b} - \frac{1}{{b'}}$

  • B

    $\frac{1}{a} + \frac{1}{{a'}} = \frac{1}{b} + \frac{1}{{b'}}$

  • C

    $\frac{1}{a} + \frac{1}{b} = \frac{1}{{a'}} + \frac{1}{{b'}}$

  • D

    None of these

Similar Questions

The co-axial system of circles given by ${x^2} + {y^2} + 2gx + c = 0$ for $c < 0$ represents

If one of the diameters of the circle $x^{2}+y^{2}-2 \sqrt{2} x$ $-6 \sqrt{2} y+14=0$ is a chord of the circle $(x-2 \sqrt{2})^{2}$ $+(y-2 \sqrt{2})^{2}=r^{2}$, then the value of $r^{2}$ is equal to

  • [JEE MAIN 2022]

The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is

The equation of a circle passing through points of intersection of the circles ${x^2} + {y^2} + 13x - 3y = 0$ and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and point $(1, 1)$ is

  • [IIT 1983]

A circle $S$ passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^2+y^2=16$ and $x^2+y^2=1$. Then

$(A)$ radius of $S$ is $8$

$(B)$ radius of $S$ is $7$

$(C)$ centre of $S$ is $(-7,1)$

$(D)$ centre of $S$ is $(-8,1)$

  • [IIT 2014]