Gujarati
10-1.Circle and System of Circles
hard

The condition of the curves $a{x^2} + b{y^2} = 1$and $a'{x^2} + b'{y^2} = 1$ to intersect each other orthogonally, is

A

$\frac{1}{a} - \frac{1}{{a'}} = \frac{1}{b} - \frac{1}{{b'}}$

B

$\frac{1}{a} + \frac{1}{{a'}} = \frac{1}{b} + \frac{1}{{b'}}$

C

$\frac{1}{a} + \frac{1}{b} = \frac{1}{{a'}} + \frac{1}{{b'}}$

D

None of these

Solution

(a) Solving for ${x^2},\;{y^2}$;$\left( {\sqrt {\frac{{b' – b}}{{ab' – ba'}}} {\rm{,}}\,{\rm{ }}\sqrt {\frac{{a' – a}}{{a'b – b'a}}} } \right)$ is the intersecting point.

Differentiating $a{x^2} + b{y^2} = 1$, $2ax + 2by\frac{{dy}}{{dx}} = 0$

$ \Rightarrow {\left( {\frac{{dy}}{{dx}}} \right)_1} = – \frac{{ax}}{{ay}}$

and ${\left( {\frac{{dy}}{{dx}}} \right)_2} = – \frac{{a'x}}{{b'y}}$

and ${\left( {\frac{{dy}}{{dx}}} \right)_1}{\left( {\frac{{dy}}{{dx}}} \right)_2} = – 1$

$ \Rightarrow \frac{{aa'}}{{bb'}}\left( {\frac{{{x^2}}}{{{y^2}}}} \right) = – 1$

or $\frac{{aa'}}{{bb'}}\left( {\frac{{b' – b}}{{a' – a}}} \right) = 1$.

Hence $\frac{1}{b} – \frac{1}{{b'}} = \left( {\frac{1}{a} – \frac{1}{{a'}}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.