- Home
- Standard 11
- Mathematics
Tangents are drawn to the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contacts of the tangents on the hyperbola are
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ $(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$ $(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$
$(B,D)$
$(B,C)$
$(A,D)$
$(A,B)$
Solution
Slope of tangents $=2$
Equation of tangents $y=2 x \pm \sqrt{9.4-4}$
$\Rightarrow y=2 x \pm \sqrt{32} $
$\Rightarrow 2 x-y \pm 4 \sqrt{2}=0$
Let point of contact be $\left( x _1, y _1\right)$ then equation $(i)$ will be identical to the equation
$\frac{x x_1}{9}-\frac{y_1}{4}-1=0 $
$\therefore \frac{x_1 / 9}{2}=\frac{y_1 / 4}{1}=\frac{-1}{ \pm 4 \sqrt{2}} $
$\Rightarrow\left(x_1, y_1\right) \equiv\left(-\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right) \text { and }\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$