Tangents are drawn to the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contacts of the tangents on the hyperbola are
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ $(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$ $(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$
$(B,D)$
$(B,C)$
$(A,D)$
$(A,B)$
If the latus rectum of an hyperbola be 8 and eccentricity be $3/\sqrt 5 $, then the equation of the hyperbola is
If angle between asymptotes of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{3} = 4$ is $\frac {\pi }{3}$ , then its conjugate hyperbola is
The asymptote of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}= 1$ form with any tangent to the hyperbola a triangle whose area is $a^2$ $\tan$ $ \lambda $ in magnitude then its eccentricity is :
Length of latusrectum of curve $xy = 7x + 5y$ is
The eccentricity of the hyperbola $\frac{{\sqrt {1999} }}{3}({x^2} - {y^2}) = 1$ is