1.Relation and Function
medium

If ${e^x} = y + \sqrt {1 + {y^2}} $, then $y =$

A

$\frac{{{e^x} + {e^{ - x}}}}{2}$

B

$\frac{{{e^x} - {e^{ - x}}}}{2}$

C

${e^x} + {e^{ - x}}$

D

${e^x} - {e^{ - x}}$

Solution

(b) $\because \;{e^x} = y + \sqrt {1 + {y^2}} $

$\therefore$ ${e^x} – y = \sqrt {1 + {y^2}} $

Squaring both the sides, ${({e^x} – y)^2} = (1 + {y^2})$

${e^{2x}} + {y^2} – 2y{e^x} = 1 + {y^2} \Rightarrow {e^{2x}} – 1 = 2y{e^x}$

==> $2y = \frac{{{e^{2x}} – 1}}{{{e^x}}} \Rightarrow 2y = {e^x} – {e^{ – x}}$

Hence, $y = \frac{{{e^x} – {e^{ – x}}}}{2}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.