Gujarati
1.Relation and Function
hard

Let function $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ be defined over the interval $[0, 1]$. The odd extensions of $f(x)$ to interval $[-1, 1]$ is

A

${x^2} + x + \sin x + \cos x - \log (1 + |x|)$

B

$ - {x^2} + x + \sin x + \cos x - \log (1 + |x|)$

C

$ - {x^2} + x + \sin x - \cos x + \log (1 + |x|)$

D

None of these

Solution

(b) Odd extension from $[0, 1]$ to $[-1, 1]$ means we have to choose the function out of $(a), (b), (c), (d)$ which satisfies the condition $f( – x) = – f(x).$
Now $| – x|\,\, = \,\,|x|$
$f( – x) = {x^2} – x – \sin x – \cos x + \log \,(1 + |x|)$
$ = – \,[{\rm{function given in (b)]}}$
$\therefore \,\,\,({\rm{b}})$ is correct. No other given function satisfies this criteria of $f( – x) = – f(x).$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.