If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are independent, then $x =$
$\frac{1}{3}$
$\frac{1}{2}$
$\frac{2}{3}$
None of these
For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.
Let $A$ and $B$ be independent events such that $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} .$ The largest value of $\mathrm{p}$, for which $\mathrm{P}$ (exactly one of $\mathrm{A}, \mathrm{B}$ occurs $)=\frac{5}{9}$, is :
Consider three sets $E_1=\{1,2,3\}, F_1=\{1,3,4\}$ and $G_1=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set $E _1$, and let $S _1$ denote the set of these chosen elements.
Let $E_2=E_1-S_1$ and $F_2=F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set $F_2$ and let $S_2$ denote the set of these chosen elements.
Let $G _2= G _1 \cup S _2$. Finally, two elements are chosen at random, without replacement, from the set $G _2$ and let $S _3$ denote the set of these chosen elements.
Let $E_3=E_2 \cup S_3$. Given that $E_1=E_3$, let $p$ be the conditional probability of the event $S_1=\{1,2\}$. Then the value of $p$ is