If $\overrightarrow A = 4\hat i - 3\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ then magnitude and direction of $\overrightarrow A \, + \overrightarrow B $ will be
$5,\,{\tan ^{ - 1}}(3/4)$
$5\sqrt 5 ,{\tan ^{ - 1}}(1/2)$
$10,\,{\tan ^{ - 1}}(5)$
$25,\,{\tan ^{ - 1}}(3/4)$
If two vectors $\vec{A}$ and $\vec{B}$ having equal magnitude $\mathrm{R}$ are inclined at an angle $\theta$, then
The magnitudes of vectors $\vec A,\,\vec B$ and $\vec C$ are $3, 4$ and $5$ units respectively. If $\vec A + \vec B = \vec C$, the angle between $\vec A$ and $\vec B$ is
A particle is simultaneously acted by two forces equal to $4\, N$ and $3 \,N$. The net force on the particle is
Match List$- I$ with List$- II.$
$[Image]$
Choose the correct answer from the options given below :
If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then