In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$
$-16 \hat{i}-24 \hat{j}+32 \hat{k}$
$16 \hat{i}+24 \hat{j}-32 \hat{k}$
$16 \hat{i}+24 \hat{j}+32 \hat{k}$
$16 \hat{i}-24 \hat{j}+32 \hat{k}$
Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................
The vectors $\overrightarrow A $ and $\overrightarrow B$ lie in a plane. Another vector $\overrightarrow C $ lies outside this plane. The resultant $\overrightarrow A + \overrightarrow B + \overrightarrow C$ of these three vectors
Two forces, ${F_1}$ and ${F_2}$ are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is
The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is
Given that $\overrightarrow A + \overrightarrow B = \overrightarrow C $and that $\overrightarrow C $ is $ \bot $ to $\overrightarrow A $. Further if $|\overrightarrow A |\, = \,|\overrightarrow C |,$then what is the angle between $\overrightarrow A $ and $\overrightarrow B $