यदि $| A + B |=| A |+| B |$ तब $\mathop A\limits^ \to $व $\mathop B\limits^ \to $ के बीच कोण है
$0$
$60$
$120$
$90$
सदिशों $5i + 8j$ तथा $2i + 7j$ को परस्पर जोड़ा जाता है। इन सदिशों के योग का परिमाण है
$10\, N$ के पाँच एकसमान बल एक बिन्दु पर आरोपित किये गये हैं तथा यह सभी एक ही तल में हैं। यदि उनके मध्य कोण बराबर हों तो इनका परिणामी ............... $\mathrm{N}$ होगा
सदिश $(\overrightarrow{ A })$ तथा $(\overrightarrow{ A }-\overrightarrow{ B })$ के बीच कोण है।
दिया है $a + b + c + d = 0$, नीचे दिए गए कथनों में से कौन-सा सही है
$(a)$ $a , b , c$ तथा $d$ में से प्रत्येक शून्य सदिश है,
$(b)$ $( a + c )$ का परिमाण $( b + d )$ के परिमाण के बराबर है, नहीं हो सकता
$(d)$ यदि $a$ तथा $d$ सरेखीय नहीं हैं तो $b + c$ अवश्य ही $a$ तथा $d$ के समतल में होगा, और यह $a$ तथा $d$ के अनुदिश होगा यद् वे सरंखीय हैं ।
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है