જો $| A + B |=| A |+| B |$ હોય તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હોવો જોઈએ?
$0$
$60$
$120$
$90$
કણ $P (2,3,5)$ બિંદુથી $Q (3,4,5)$ બિંદુ સુધી ગતિ કરે,તો સ્થાનાંતર સદિશ
અસમાન મૂલ્યના ત્રણ સદિશોનો પરિણામી સદિશ શૂન્ય સદિશ હોઈ શકે ?
$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$અને $\overrightarrow C = 6\hat i - 2\hat k$ હોય તો , $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ નુ મુલ્ય
$\overrightarrow{ A }=4 \hat{i}+3 \hat{j}$ અને $\overrightarrow{ B }=4 \hat{i}+2 \hat{j}$ છે. $\overrightarrow{ A }$ ને સમાંતર અને જેની તીવ્રતા $\overrightarrow{ B }$ કરતા પાંચ ગણી હોય તે સદિશ શોધો.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?