જો સમીકરણ $0 \le x < 2\pi $ તો સમીકરણ $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ ને સંતોષતી $x$ ની વાસ્તવિક કિંમતોની સંખ્યા . . . . . .છે.
$7$
$9$
$3$
$5$
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
જો $0\, \le \,x\, < \frac{\pi }{2},$ તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.
$x \in\left(0, \frac{\pi}{2}\right)$ માટે, જો સમીકરણ $\left(\log _{\cos x} \cot x\right)+4\left(\log _{\sin x} \tan x\right)=1$ નો ઉકેલ $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$ હોય,જ્યાં $\alpha,\beta$ પુર્ણાકો છે,તો $\alpha+\beta=.........$.
જો $\sin \theta + \cos \theta = 1$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$ ને વાસ્તવિક ઉકેલ $x$ હોય તેવી $\lambda$ ની તમામ કિંમતોનો ગણ $...........$ છે.