यदि $0 \leq x \leq 2 \pi$ है, तो $x$ के उन वास्तविक मानों की संख्या जो समीकरण $\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0$ को संतुष्ट करते हैं, है
$7$
$9$
$3$
$5$
मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$
यदि $\sin 5x + \sin 3x + \sin x = 0$, तो शून्य के अतिरिक्त अंतराल $0 \le x \le \frac{\pi }{2}$ में $x$ का मान होगा
यदि $2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)$ है, तो $7 \cos \theta+6 \sin \theta$ बराबर है
समीकरणों $2{\sin ^2}x + {\sin ^2}2x = 2$ व $\sin 2x + \cos 2x = \tan x,$ के उभयनिष्ठ मूल हैं
यदि $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, तो $\theta $ के व्यापक मान है