14.Waves and Sound
medium

If $n _{1}, n_{2}$ and $n _{3}$ are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency $n$ of the string is given by

A

$n=n_{1}+n_{2}+n_{3}$

B

$\sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}$

C

$\frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n}$

D

$\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n_{2}}}+\frac{1}{\sqrt{n_{3}}}$

(AIPMT-2012) (AIPMT-2014)

Solution

Let $l$ be the length of the string.

Fundamental frequency is given by

$n=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$

$n \propto \frac{1}{l}(\because T \text { and } \mu \text { are constants })$

Here, $l_{1}=\frac{k}{n_{1}}, l_{2}=\frac{k}{n_{2}}, l_{3}=\frac{k}{n_{3}}$ and $l=\frac{k}{n}$

But $l=l_{1}+l_{2}+l_{3}$

$\therefore \quad \frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.