If $y = 2x$ is a chord of the circle ${x^2} + {y^2} - 10x = 0$, then the equation of the circle of which this chord is a diameter, is 

  • A

    ${x^2} + {y^2} - 2x + 4y = 0$

  • B

    ${x^2} + {y^2} + 2x + 4y = 0$

  • C

    ${x^2} + {y^2} + 2x - 4y = 0$

  • D

    ${x^2} + {y^2} - 2x - 4y = 0$

Similar Questions

The equation of radical axis of the circles ${x^2} + {y^2} + x - y + 2 = 0$ and $3{x^2} + 3{y^2} - 4x - 12 = 0,$ is

The intercept on the line $y = x$ by the circle ${x^2} + {y^2} - 2x = 0$ is $AB$ . Equation of the circle with $AB$ as a diameter is

  • [IIT 1996]

If $P$ and $Q$ are the points of intersection of the circles ${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$ and ${x^2} + {y^2} + 2x + 2y - {p^2} = 0$ then there is a circle passing through $P, Q$ and $(1, 1)$ for:

  • [AIEEE 2009]

If the circles ${x^2} + {y^2} = {a^2}$and ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ touch each other externally, then

The equation of the circle having its centre on the line $x + 2y - 3 = 0$ and passing through the points of intersection of the circles ${x^2} + {y^2} - 2x - 4y + 1 = 0$ and ${x^2} + {y^2} - 4x - 2y + 4 = 0$, is