Let $C_i \equiv x^2 + y^2 = i^2 (i = 1,2,3)$ are three circles. If there are $4i$ points on circumference of circle $C_i$. If no three of all the points on three circles are collinear then number of triangles which can be formed using these points whose circumcentre does not lie on origin, is-
$384$
$2024$
$1360$
$1744$
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
If the circles $x^{2}+y^{2}+6 x+8 y+16=0$ and $x^{2}+y^{2}+2(3-\sqrt{3}) x+x+2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k >0$, touch internally at the point $P(\alpha, \beta)$, then $(\alpha+\sqrt{3})^{2}+(\beta+\sqrt{6})^{2}$ is equal to $\dots\dots$
Let the equation $x^{2}+y^{2}+p x+(1-p) y+5=0$ represent circles of varying radius $\mathrm{r} \in(0,5]$. Then the number of elements in the set $S=\left\{q: q=p^{2}\right.$ and $\mathrm{q}$ is an integer $\}$ is ..... .
The equation of the image of the circle ${x^2} + {y^2} + 16x - 24y + 183 = 0$ by the line mirror $4x + 7y + 13 = 0$ is
One of the limit point of the coaxial system of circles containing ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x$ $ - 4y + 3 = 0$ is