- Home
- Standard 12
- Mathematics
If $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,then
$A = 0$ for all $\theta $
$A$ is an odd Function of $\theta $
$A = 0$ for $\theta = \alpha + \beta + \gamma $
$A$ is independent of $\theta $
Solution
(d) Given $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$
Operate ${R_2} \to {R_2} – {R_1},\,{R_3} \to {R_3} – {R_1}$
$\therefore $$A = \{ \cos (\theta + \gamma ) – \cos (\theta + \alpha )\} $
$\{ \sin (\theta + \beta ) – \sin (\theta + \alpha )\} – \{ \cos (\theta + \beta )$
= $\sin (\beta – \gamma ) – \sin (\beta – \alpha ) – \sin (\alpha – \gamma )$,
which is independent of $\theta $.