यदि $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,तब
$A = 0$, $\theta $ के सभी मानों के लिये
$A$, , का एक विषम फलन है
$A = 0$, $\theta = \alpha + \beta + \gamma $ के लिये
$A$, $\theta $ से स्वतंत्र है
यदि $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ तो निम्न में से कौन सा सम्बन्ध सत्य है
यदि समीकरण निकाय $x-2 y+3 z=9$, $2 x+y+z=b$, $x-7 y+a z=24$ के अनंत हल हो, तो $a - b$ का मान होगा
सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,का गुणनखण्ड होगा
यदि $x , y , z$ समान्तर श्रेढ़ी में हैं जिसका सार्वअन्तर $d ,( x \neq 3 d )$ है और आव्यूह $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z \end{array}\right]$ का सारणिक शून्य है, तो $k ^{2}$ का मान है
समीकरण $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ के मूल हैं