- Home
- Standard 12
- Mathematics
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $
$0$
${a^3} + {b^3} + {c^3} - 3abc$
$3abc$
${(a + b + c)^3}$
Solution
(a) $\left| \,\begin{matrix}
1 & a & {{a}^{2}}-bc \\
1 & b & {{b}^{2}}-ac \\
1 & c & {{c}^{2}}-ab \\
\end{matrix}\, \right|=\left| \,\begin{matrix}
0 & a-b & (a-b)\,(a+b+c) \\
0 & b-c & (b-c)\,\,(a+b+c) \\
1 & c & {{c}^{2}}-ab \\
\end{matrix}\, \right|$
by $\left\{ \begin{array}{l}{R_1} \to {R_1} – {R_2}\\{R_2} \to {R_2} – {R_3}\end{array} \right.$
= $(a – b)\,(b – c)\,\left| {\,\begin{array}{*{20}{c}}0&1&{a + b + c}\\0&1&{a + b + c}\\1&c&{{c^2} – ab}\end{array}\,} \right| = 0$,
$\{\because\,\,{R_1} \equiv {R_2}\} $