3 and 4 .Determinants and Matrices
medium

$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $

A

$0$

B

${a^3} + {b^3} + {c^3} - 3abc$

C

$3abc$

D

${(a + b + c)^3}$

(IIT-1988)

Solution

(a) $\left| \,\begin{matrix}
   1 & a & {{a}^{2}}-bc  \\
   1 & b & {{b}^{2}}-ac  \\
   1 & c & {{c}^{2}}-ab  \\
\end{matrix}\, \right|=\left| \,\begin{matrix}
   0 & a-b & (a-b)\,(a+b+c)  \\
   0 & b-c & (b-c)\,\,(a+b+c)  \\
   1 & c & {{c}^{2}}-ab  \\
\end{matrix}\, \right|$

by $\left\{ \begin{array}{l}{R_1} \to {R_1} – {R_2}\\{R_2} \to {R_2} – {R_3}\end{array} \right.$

= $(a – b)\,(b – c)\,\left| {\,\begin{array}{*{20}{c}}0&1&{a + b + c}\\0&1&{a + b + c}\\1&c&{{c^2} – ab}\end{array}\,} \right| = 0$,

                                                                             $\{\because\,\,{R_1} \equiv {R_2}\} $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.