If $a, b, c$ are all different from zero and $\left| {\begin{array}{*{20}{c}} {1  + a}&1&1\\ 1&{1  +  b}&1\\ 1&1&{1  +  c} \end{array}} \right| = 0$ , then the value of $a^{-1} + b^{-1} + c^{-1}$ is

  • A

    $abc$

  • B

    $a^{-1}\, b^{-1}\, c^{-1}$

  • C

    $-a-b-c$

  • D

    $-1$

Similar Questions

Evaluate $\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$

If $a, b, c > 0 \, and \, x, y, z \in R$ , then the determinant $\left|{\begin{array}{*{20}{c}}{{{\left( {{a^x}\, + \,\,{a^{ - x}}} \right)}^2}}&{{{\left( {{a^x}\, - \,\,{a^{ - x}}} \right)}^2}}&1\\{{{\left( {{b^y}\, + \,\,{b^{ - y}}} \right)}^2}}&{{{\left( {{b^y}\, - \,\,{b^{ - y}}} \right)}^2}}&1\\{{{\left( {{c^z}\, + \,\,{c^{ - z}}} \right)}^2}}&{{{\left( {{c^z}\, - \,\,{c^{ - z}}} \right)}^2}}&1\end{array}} \right|$ $=$

If $\left| {\,\begin{array}{*{20}{c}}{y + z}&{x - z}&{x - y}\\{y - z}&{z - x}&{y - x}\\{z - y}&{z - x}&{x + y}\end{array}\,} \right| = k\,xyz$, then the value of $k $ is

Let $P=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k I$, where $k \in \mathbb{R}, k \neq 0$ and $I$ is the identity matrix of order $3$ . If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^2}{2}$, then

($A$) $\quad \alpha=0, k=8$

($B$) $4 \alpha-k+8=0$

($C$) $\operatorname{det}(P \operatorname{adj}(Q))=2^9$

($D$) $\operatorname{det}(Q \operatorname{adj}(P))=2^{13}$

  • [IIT 2016]

If $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&c\\x&y&z\\p&q&r\end{array}\,} \right|$, then $\left| {\,\begin{array}{*{20}{c}}{ka}&{kb}&{kc}\\{kx}&{ky}&{kz}\\{kp}&{kq}&{kr}\end{array}\,} \right|$=