Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

If $a, b, c$ are all different from zero and $\left| {\begin{array}{*{20}{c}} {1  + a}&1&1\\ 1&{1  +  b}&1\\ 1&1&{1  +  c} \end{array}} \right| = 0$ , then the value of $a^{-1} + b^{-1} + c^{-1}$ is

A

$abc$

B

$a^{-1}\, b^{-1}\, c^{-1}$

C

$-a-b-c$

D

$-1$

Solution

$C_1 \rightarrow C_1 – C_2 \, \,and\, \, C_2 \rightarrow C_2 – C_3 \, \,and\, \,$ then open by $R_1$ to get $ab + abc + ac + bc = 0;$  divided by $abc$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.