- Home
- Standard 12
- Mathematics
Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and $I$ be the identity matrix of order $3$ . If $\left.Q=q_{i j}\right]$ is a matrix such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
$52$
$103$
$201$
$205$
Solution
$P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right] $
$ P^2=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1\end{array}\right] $
$ P ^3=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 12 & 1 & 0 \\ 56 & 12 & 1\end{array}\right]$
$P^4=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 16 & 1 & 0 \\ 160 & 16 & 1\end{array}\right] $
$\therefore P ^{50}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 \times 50 & 1 & 0 \\ p _{31} & 4 \times 50 & 1\end{array}\right] Q =\left[\begin{array}{lll} q _{11} & q _{12} & q _{13} \\ q _{21} & q _{22} & q _{23} \\ q _{31} & q _{32} & q _{33}\end{array}\right]$
$ P^{50}-Q=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow 4 \times 50- q _{21}= o$
$p _{31}- q _{31}= o$
$4 \times 50- q _{32}= q$
On observing,
$p _{31^1}=16 \times 1$
$p _{31^2}=16 \times(1+2)$
$p _{31^3}=16 \times(1+2+3)$
$p _{3150}=16 \times(1+2+3+\ldots .50)$
$=16 \times \frac{50 \times 51}{2}$
$\therefore \frac{ q _{31}+ q _{32}}{ q _{21}}=\frac{ p _{31}+ p _{32}}{ p _{21}}$
$=\frac{16 \times 25 \times 51+4 \times 50}{4 \times 50}$
$=103$