The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ is

  • A

    $-2$

  • B

    $0$

  • C

    $81$

  • D

    None of these

Similar Questions

The value of $\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ is

The determinant $\left| {\begin{array}{*{20}{c}}{{b_1}\, + \,\,{c_1}}&{{c_1}\, + \,\,{a_1}}&{{a_1}\, + \,\,{b_1}}\\{{b_2}\, + \,\,{c_2}}&{{c_2}\, + \,\,{a_2}}&{{a_2}\, + \,\,{b_2}}\\{{b_3}\, + \,\,{c_3}}&{{c_3}\, + \,\,{a_3}}&{{a_3}\, + \,\,{b_3}} \end{array}} \right|$ $=$

Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and $I$ be the identity matrix of order $3$ . If $\left.Q=q_{i j}\right]$ is a matrix such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals

  • [IIT 2016]

The value of $x$  obtained from the equation $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ will be

The total number of distinct $x \in \mathbb{R}$ for which $\left|\begin{array}{ccc}x & x^2 & 1+x^3 \\ 2 x & 4 x^2 & 1+8 x^3 \\ 3 x & 9 x^2 & 1+27 x^3\end{array}\right|=10$ is

  • [IIT 2016]