Let $X$ and $Y$ be two arbitrary, $3 \times 3$, non-zero, skew-symmetric matrices and $Z$ be an arbitrary $3 \times 3$, nonzero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
$(A)$ $Y^3 Z^4-Z^4 Y^3$ $(B)$ $X ^{44}+ Y ^{44}$
$(C)$ $X ^4 Z ^3- Z ^3 X ^4$ $(B)$ $X ^{23}+ Y ^{23}$
Let three matrices $A =$$\left[ {\begin{array}{*{20}{c}}2&1\\4&1\end{array}} \right]$ ; $B =$$\left[ {\begin{array}{*{20}{c}}3&4\\2&3\end{array}} \right]$ and $C =$$\left[ {\begin{array}{*{20}{c}}3&{ – 4}\\{ – 2}&3\end{array}} \right]$ then $T_r(A) + t_r$ $\left( {\frac{{ABC}}{2}} \right)$ $+$ $t_r$$\left( {\frac{{A{{(BC)}^2}}}{4}} \right)$ $+$ $t_r$ $\left( {\frac{{A{{(BC)}^3}}}{8}} \right)$ $+$ ……. $+ \infty =$
Let $ A$ be a skew- symmetric matrix of odd order, then $ |A| $ is equal to
The total number of matrices $A = \left[ {\begin{array}{*{20}{c}} 0&{2x}&{2x}\\ {2y}&y&{ – y}\\ 1&{ – 1}&1 \end{array}} \right];\,\left( {x,y \in R,\,x \ne y} \right)$ for which ${A^T}A = 3{I_3}$
If $ A$ is a square matrix, then which of the following matrices is not symmetric
Confusing about what to choose? Our team will schedule a demo shortly.