- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $ A$ be a skew- symmetric matrix of odd order, then $ |A| $ is equal to
A
$0$
B
$1$
C
$-1$
D
None of these
Solution
(a) Let $A $ be a skew-symmetric matrix of odd order, say $(2n + 1)\,$.Since $ A$ is skew-symmetric, therefore ${A^T} = – A$.
$ \Rightarrow $ $|{A^T}|\, = \,| – A|\, \Rightarrow |{A^T}| = {( – 1)^{2n + 1}}|A|$
$ \Rightarrow $ $|{A^T}|\,\, = – |A|\, \Rightarrow |A| = – |A|$
$ \Rightarrow $ $2|A|\, = 0 \Rightarrow |A| = 0$.
Standard 12
Mathematics