Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

If $A =$ $\left( {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right)$ , then $A^n$ (where $n \in N$) equals

A

$\left( {\begin{array}{*{20}{c}}1&{na}\\0&1\end{array}} \right)$

B

$\left( {\begin{array}{*{20}{c}}1&{{n^2}a}\\0&1\end{array}} \right)$

C

$\left( {\begin{array}{*{20}{c}}1&{na}\\0&0\end{array}} \right)$

D

$\left( {\begin{array}{*{20}{c}}n&{na}\\0&n\end{array}} \right)$

Solution

We have $A^2 =$ $\left( {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right)$ $\left( {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right)$ $=$ $\left({\begin{array}{*{20}{c}}1&{2a}\\0&1\end{array}} \right)$

$A^3$ $= A^2A$ $=$ $\left( {\begin{array}{*{20}{c}}1&{2a}\\0&1\end{array}}\right)$ $\left( {\begin{array}{*{20}{c}}1&a\\0&1\end{array}} \right)$  $=$ $\left({\begin{array}{*{20}{c}}1&{3a}\\0&1\end{array}} \right)$

In general by induction, $A^n =$ $\left( {\begin{array}{*{20}{c}}1&{na}\\0&1\end{array}} \right)$ , $\forall \, n \in N$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.