- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $a, b, c > 0 \, and \, x, y, z \in R$ , then the determinant $\left|{\begin{array}{*{20}{c}}{{{\left( {{a^x}\, + \,\,{a^{ - x}}} \right)}^2}}&{{{\left( {{a^x}\, - \,\,{a^{ - x}}} \right)}^2}}&1\\{{{\left( {{b^y}\, + \,\,{b^{ - y}}} \right)}^2}}&{{{\left( {{b^y}\, - \,\,{b^{ - y}}} \right)}^2}}&1\\{{{\left( {{c^z}\, + \,\,{c^{ - z}}} \right)}^2}}&{{{\left( {{c^z}\, - \,\,{c^{ - z}}} \right)}^2}}&1\end{array}} \right|$ $=$
A
$a^xb^yc^z$
B
$a^{-x}b^{-y}c^{-z}$
C
$a^{2x}b^{2y}c^{2z}$
D
zero
Solution
$C_1 \rightarrow C_1 – C_2$ and take $4$ common
==> two identical columns
Standard 12
Mathematics