If $a, b, c > 0 \, and \, x, y, z \in R$ , then the determinant $\left|{\begin{array}{*{20}{c}}{{{\left( {{a^x}\, + \,\,{a^{ - x}}} \right)}^2}}&{{{\left( {{a^x}\, - \,\,{a^{ - x}}} \right)}^2}}&1\\{{{\left( {{b^y}\, + \,\,{b^{ - y}}} \right)}^2}}&{{{\left( {{b^y}\, - \,\,{b^{ - y}}} \right)}^2}}&1\\{{{\left( {{c^z}\, + \,\,{c^{ - z}}} \right)}^2}}&{{{\left( {{c^z}\, - \,\,{c^{ - z}}} \right)}^2}}&1\end{array}} \right|$ $=$
$a^xb^yc^z$
$a^{-x}b^{-y}c^{-z}$
$a^{2x}b^{2y}c^{2z}$
zero
By using properties of determinants, show that:
$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$
Let $a, b, c, d$ be in arithmetic progression with common difference $\lambda$. If
$\left|\begin{array}{lll} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{array}\right|=2$
then value of $\lambda^{2}$ is equal to $.....$
Let $P=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k I$, where $k \in \mathbb{R}, k \neq 0$ and $I$ is the identity matrix of order $3$ . If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^2}{2}$, then
($A$) $\quad \alpha=0, k=8$
($B$) $4 \alpha-k+8=0$
($C$) $\operatorname{det}(P \operatorname{adj}(Q))=2^9$
($D$) $\operatorname{det}(Q \operatorname{adj}(P))=2^{13}$
The solutions of the equation $\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0,(0< x< \pi), \operatorname{are}$