Let $a-2 b+c=1$
If $f(x)=\left|\begin{array}{lll}{x+a} & {x+2} & {x+1} \\ {x+b} & {x+3} & {x+2} \\ {x+c} & {x+4} & {x+3}\end{array}\right|,$ then
$f(-50)=501$
$f(-50)=-1$
$f(50)=1$
$f(50)=501$
If $a,b,c$ are distinct and rational numbers then $\left| {\begin{array}{*{20}{c}}
{\left( {{a^2} + {b^2} + {c^2}} \right)}&{ab + bc + ca}&{ab + bc + ca}\\
{ab + bc + ca}&{\left( {{a^2} + {b^2} + {c^2}} \right)}&{\left( {bc + ca + ab} \right)}\\
{ab + bc + ca}&{\left( {ab + bc + ca} \right)}&{\left( {{a^2} + {b^2} + {c^2}} \right)}
\end{array}} \right|$ is always
Prove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$
Give the correct order of initials $T$ or $F$ for following statements. Use $T$ if statement is true and $F$ if it is false.
Statement $-1$ : If the graphs of two linear equations in two variables are neither parallel nor the same, then there is a unique solution to the system. Statement $-2$ : If the system of equations $ax + by = 0, cx + dy = 0$ has a non-zero solution, then it has infinitely many solutions.
Statement $-3$ : The system $x + y + z = 1, x = y, y = 1 + z$ is inconsistent. Statement $-4$ : If two of the equations in a system of three linear equations are inconsistent, then the whole system is inconsistent.
If $a^2 + b^2 + c^2 = - 2$ and $f (x) = $ $\left| {\,\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\ {(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}\,} \right|$ then $f (x)$ is a polynomial of degree