If $\left| {\begin{array}{*{20}{c}}{a\, + \,1}&{a\, + \,2}&{a\, + \,p}\\{a\, + \,2}&{a\, +\,3}&{a\, + \,q}\\{a\, + \,3}&{a\, + \,4}&{a\, + \,r}\end{array}} \right|$ $= 0$ , then $p, q, r$ are in :
$AP$
$GP$
$HP$
none
For how many diff erent values of $a$ does the following system have at least two distinct solutions?
$a x+y=0$
$x+(a+10) y=0$
If ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ are in $G.P.$ then $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\
{{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}}
\end{array}} \right|$ is equal to
Number of triplets of $a, b \, \& \,c$ for which the system of equations,$ax - by = 2a - b$ and $(c + 1) x + cy = 10 - a + 3 b$ has infinitely many solutions and $x = 1, y = 3$ is one of the solutions, is :
If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then
The value of $k \in R$, for which the following system of linear equations
$3 x-y+4 z=3$
$x+2 y-3 x=-2$
$6 x+5 y+k z=-3$
has infinitely many solutions, is: