Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(\mathrm{k}, 0),(4,0),(0,2)$
$0,3$
$0,5$
$0,8$
$0,9$
The number of distinct real roots of $\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ in the interval $ - \frac{\pi }{4} \le x \le \frac{\pi }{4}$ is
The maximum value of
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R \text { is }$
In a $\Delta ABC,$ if $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $
Consider system of equations $ x + y -az = 1$ ; $2x + ay + z = 1$ ; $ax + y -z = 2$
Consider the following system of equations : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ where $a , b$ and $c$ are real constants. Then the system of equations :