Gujarati
Hindi
3 and 4 .Determinants and Matrices
medium

If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$

A

$1$

B

$2$

C

$3$

D

none

Solution

Put $\omega ^3 = 1$ $\left| {\,\begin{array}{*{20}{c}}1&1&{{\omega ^2}}\\ 1&1&\omega \\{{\omega ^2}}&\omega &1\end{array}\,} \right|$ and open by $R_1$ to get $(1 – \omega ^2) + (1 – \omega ) = 3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.