The system of linear equations $x + \lambda y - z = 0,\lambda x - y - z = 0\;,\;x + y - \lambda z = 0$ has a non-trivial solution for:
exactly two values of $\lambda $
exactly three values of $\;\lambda $
infinitely many values of $\lambda $
exactly one value of $\;\lambda $
If $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ then the ordered pair $\left( {A,B} \right) = $. . . . .
The number of solution of the following equations ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ is
If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$
The value of $'a'$ for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ has a non-zero solution is :-