If $p, q, r, s$ are in $A.P.$ and $f (x) =$ $\left| {\,\begin{array}{*{20}{c}} {p\,\, + \,\,\sin \,x}&{q\,\, + \,\,\sin \,x}&{p\,\, - \,\,r\,\, + \,\,\sin \,x}\\ {q\,\, + \,\,\sin \,x}&{r\,\, + \,\,\sin \,x}&{ - \,1\,\, + \,\,\sin \,x}\\ {r\,\, + \,\,\sin \,x}&{s\,\, + \,\,\sin \,x}&{s\,\, - \,\,q\,\, + \,\,\sin \,x} \end{array}\,} \right|$ such that $f (x)dx = - 4$ then the common difference of the $A.P.$ can be :

  • A
    $-1$
  • B
    $\frac{1}{2}$
  • C
    $1$
  • D
    Both $(A)$ and $(C)$

Similar Questions

Let $z=\frac{-1+\sqrt{3} i}{2}$, where $i=\sqrt{-1}$, and $r, s \in\{1,2,3\}$. Let$P=\left[\begin{array}{cc}(-z)^r & z^{2 s} \\ z^{2 s} & z^r\end{array}\right]$ and $I$ be the identity matrix of order $2$ . Then the total number of ordered pairs $(r, s)$ for which $P^2=-I$ is

  • [IIT 2016]

For a non - zero, real $a, b$ and $c$ $\left| {\begin{array}{*{20}{c}}{\frac{{{a^2} + {b^2}}}{c}}&c&c\\a&{\frac{{{b^2} + {c^2}}}{a}}&a\\b&b&{\frac{{{c^2} + {a^2}}}{b}} \end{array}} \right|$ $= \alpha \, abc$, then the values of $\alpha$ is

Let $P=\left[a_{\|}\right]$be $a \times 3$ matrix and let $Q=\left[b_1\right]$, where $b_1=2^{1+j} a_{\|}$for $1 \leq i, j \leq 3$. If the determinant of $P$ is $2$ , then the determinant of the matrix $Q$ is

  • [IIT 2012]

$$f(x)=\left| {\begin{array}{*{20}{c}} {{{\sin }^2}x}&{ - 2 + {{\cos }^2}x}&{\cos 2x} \\ {2 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x} \\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + \cos 2x} \end{array}} \right| ,x \in[0, \pi]$$

Then the maximum value of $f(x)$ is equal to $.....$

  • [JEE MAIN 2021]

If $\left| {\begin{array}{*{20}{c}}   {a - b}&{b - c}&{c - a} \\    {b - c}&{c - a}&{a - b} \\    {c - a + 1}&{a - b}&{b - c}  \end{array}} \right| = 0$ ,$\left( {a,b,c \in R - \left\{ 0 \right\}} \right),$ then