Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
$x y$
$x^2 y$
$x^2 y^2$
$x y^2$
If ${D_r} = \left| {\begin{array}{*{20}{c}}{{2^{r - 1}}}&{{{2.3}^{r - 1}}}&{{{4.5}^{r - 1}}}\\x&y&z\\{{2^n} - 1}&{{3^n} - 1}&{{5^n} - 1}\end{array}} \right|$, then the value of $\sum\limits_{r = 1}^n {{D_r} = } $
If $A =$ $\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]$ (where $bc \ne 0$) satisfies the equations $x^2 + k = 0$, then
If ${a_1},{a_2},{a_3},........,{a_n},......$ are in G.P. and ${a_i} > 0$ for each $i$, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|$ is equal to
By using properties of determinants, show that:
$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$