If $\theta$ is small $\&$ positive number then which of the following is/are correct ?
$\frac{{\sin \,\theta }}{\theta }= 1$
$\frac{{\tan \,\theta }}{\theta } > \frac{{\sin \,\theta }}{\theta }$
$sin \theta < \theta < tan \theta$
$(B)$ or $(C)$ both
If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $
Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?
Let $\mathrm{f}: N \rightarrow N$ be a function such that $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ for every $\mathrm{m}, \mathrm{n} \in N$. If $\mathrm{f}(6)=18$ then $\mathrm{f}(2) \cdot \mathrm{f}(3)$ is equal to :
Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is
The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is