- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$ is
A
$\pi /2$
B
$\pi /4$
C
$\pi$
D
$2\pi$
Solution
$f(x)=\frac{|\sin x|-|\cos x|}{|\sin x \cos x|}$
$=\frac{|\sin x|-|\cos x|}{\left|\frac{1}{2} 2 \sin x \cos x\right|}=\frac{|\sin x|-|\cos x|}{\left|\frac{1}{2} \sin 2 x\right|}$
As period of $|\sin x|,|\cos x|$ is $\pi,$ and period of $|\sin 2 x|$ is $\frac{\pi}{2}$
Therefore period of $f(x)$ is $\pi$
Standard 12
Mathematics