Gujarati
Hindi
1.Relation and Function
normal

The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$  is

A

$\pi /2$

B

$\pi /4$

C

$\pi$

D

$2\pi$

Solution

$f(x)=\frac{|\sin x|-|\cos x|}{|\sin x \cos x|}$

$=\frac{|\sin x|-|\cos x|}{\left|\frac{1}{2} 2 \sin x \cos x\right|}=\frac{|\sin x|-|\cos x|}{\left|\frac{1}{2} \sin 2 x\right|}$

As period of $|\sin x|,|\cos x|$ is $\pi,$ and period of $|\sin 2 x|$ is $\frac{\pi}{2}$

Therefore period of $f(x)$ is $\pi$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.