3 and 4 .Determinants and Matrices
normal

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

A

$0$

B

$1$

C

$\sqrt3 $

D

$2$

Solution

$\left|\begin{array}{ccc}{a} & {-a^{2}} & {a^{3}} \\ {-a^{2}} & {a^{3}} & {a} \\ {a^{3}} & {a} & {-a^{2}}\end{array}\right|=0$

$\Rightarrow a^{3}(a+1)^{2}\left(a^{2}-a+1\right)^{2}=0$

$ \Rightarrow {\rm{a}} = 0, – 1, – \omega , – {\omega ^2}$

$\Rightarrow \mathrm{a}=-\omega,-\omega^{2}$  (non real)

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.