- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.
A
$0$
B
$1$
C
$\sqrt3 $
D
$2$
Solution
$\left|\begin{array}{ccc}{a} & {-a^{2}} & {a^{3}} \\ {-a^{2}} & {a^{3}} & {a} \\ {a^{3}} & {a} & {-a^{2}}\end{array}\right|=0$
$\Rightarrow a^{3}(a+1)^{2}\left(a^{2}-a+1\right)^{2}=0$
$ \Rightarrow {\rm{a}} = 0, – 1, – \omega , – {\omega ^2}$
$\Rightarrow \mathrm{a}=-\omega,-\omega^{2}$ (non real)
Standard 12
Mathematics