3 and 4 .Determinants and Matrices
normal

If $\left[ {\begin{array}{*{20}{c}}
  2&1 \\ 
  1&2 
\end{array}} \right]$ $A\left[ {\begin{array}{*{20}{c}}
  { - 3}&2 \\ 
  5&{ - 3} 
\end{array}} \right] = {I_2}$ then $A =$

A

$\left[ {\begin{array}{*{20}{c}}
  1&1 \\ 
  1&0 
\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}
  1&1 \\ 
  0&1
\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}
  1&0 \\ 
  1&1
\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}
  0&1 \\ 
  1&1
\end{array}} \right]$

Solution

$\left[\begin{array}{ll}{2} & {1} \\ {3} & {2}\end{array}\right] {A}\left[\begin{array}{cc}{-3} & {2} \\ {5} & {-3}\end{array}\right]=\left[\begin{array}{ll}{1} & {0} \\ {0} & {1}\end{array}\right]$

$\left[\begin{array}{ll}{2} & {1} \\ {3} & {2}\end{array}\right] \mathrm{A}=\left[\begin{array}{ll}{1} & {0} \\ {0} & {1}\end{array}\right]\left[\begin{array}{ll}{-3} & {2} \\ {5} & {-3}\end{array}\right]^{-1}$

$A=\left[\begin{array}{ll}{2} & {1} \\ {3} & {2}\end{array}\right]^{-1}\left[\begin{array}{ll}{1} & {0} \\ {0} & {1}\end{array}\right]\left[\begin{array}{cc}{-3} & {2} \\ {5} & {-3}\end{array}\right]^{-1}$

$=\frac{1}{1}\left[\begin{array}{cc}{2} & {1} \\ {3} & {2}\end{array}\right] \frac{1}{-1}\left[\begin{array}{cc}{-3} & {-2} \\ {-5} & {-3}\end{array}\right]$

$=\left[\begin{array}{cc}{2} & {-1} \\ {-2} & {2}\end{array}\right]\left[\begin{array}{cc}{3} & {2} \\ {5} & {3}\end{array}\right]$

$ \Rightarrow\left[\begin{array}{cc}{6-5} & {4-3} \\ {-9+10} & {-6+6}\end{array}\right]=\left[\begin{array}{cc}{1} & {1} \\ {1} & {0}\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.