3 and 4 .Determinants and Matrices
normal

If $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
  {\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\ 
  {\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\ 
  {\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)} 
\end{array}} \right|$ and $f(10) = 10$ then $f(\pi)$ is equal to

A

$0$

B

$\pi$

C

$10$

D

None of these

Solution

$f'\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)}\\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)}\\
{\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)}
\end{array}} \right|$

$ + \left( { – 1} \right)\left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)}\\
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)}\\
{\sin \left( {\alpha  + \beta } \right)}&{\sin \left( {\beta  + \gamma } \right)}&{\sin \left( {\gamma  + \alpha } \right)}
\end{array}} \right|$

$ + \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \gamma } \right)}\\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \gamma } \right)}\\
0&0&0
\end{array}} \right|$

$ = 0 – 0 + 0 = 0$

Henc, $f(x)$ is a constant $f'n;$

$\because $ $f\left( {10} \right) = 10\,\,\,\,\,\,\, \Rightarrow \boxed{f\left( x \right)10}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.