If $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\
{\sin \left( {\alpha + \beta } \right)}&{\sin \left( {\beta + \gamma } \right)}&{\sin \left( {\gamma + \alpha } \right)}
\end{array}} \right|$ and $f(10) = 10$ then $f(\pi)$ is equal to
$0$
$\pi$
$10$
None of these
If $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, then $\lambda$, $\frac{\lambda}{3}$ are the roots of the equation
If $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, then the value of $A $ is
If the lines $x + 2ay + a = 0$, $x + 3by + b = 0$ and $x + 4cy + c = 0$ are concurrent, then $a$, $b$ and $c$ are in
If $[x]$ denotes the greatest integer $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$
$[cot \,\theta ] x + y = 0$
Let $[\lambda]$ be the greatest integer less than or equal to $\lambda$. The set of all values of $\lambda$ for which the system of linear equations $x+y+z=4,3 x+2 y+5 z=3$ $9 x+4 y+(28+[\lambda]) z=[\lambda]$ has a solution is: