- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
In a square matrix $A$ of order $3, a_{i i}'s$ are the sum of the roots of the equation $x^2 - (a + b)x + ab= 0$; $a_{i , i + 1}'s$ are the product of the roots, $a_{i , i - 1}'s$ are all unity and the rest of the elements are all zero. The value of the det. $(A)$ is equal to
A$0$
B$(a + b)^3$
C$a^3 -b^3$
D$(a^2 + b^2)(a + b)$
Solution
Given $a_{11} = a_{22} = a_{33} = a + b$
$A_{12} = a_{23} = ab$
Det $(A) =$ $\left| {\,\begin{array}{*{20}{c}}{a + b}&{ab}&0\\1&{a + b}&{ab}\\0&1&{a + b}\end{array}\,} \right|$ $= (a^2 + b^2)(a + b)$
Standard 12
Mathematics