If the system of linear equations $2x + 2y + 3z = a$ ; $3x - y + 5z = b$ ; $x - 3y + 2z = c$ Where $a, b, c$ are non zero real numbers, has more than one solution, then

  • [JEE MAIN 2019]
  • A

    $b \,-\, c \,+\, a = 0$

  • B

    $b\, -\, c\, -\,a = 0$

  • C

    $a \,+\, b\, +\, c = 0$

  • D

    $b \,+ \,c\, -\,a = 0$

Similar Questions

For the system of linear equations

$2 x-y+3 z=5$

$3 x+2 y-z=7$

$4 x+5 y+\alpha z=\beta$

Which of the following is NOT correct ?

  • [JEE MAIN 2023]

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$

Evaluate the determinants

$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

Number of triplets of $a, b \, \& \,c$ for which the system of equations,$ax - by = 2a - b$ and $(c + 1) x + cy = 10 - a + 3 b$ has infinitely many solutions and $x = 1, y = 3$ is one of the solutions, is :