Gujarati
Hindi
Trigonometrical Equations
normal

If $tan(\pi sin \theta)$ $= cot(\pi cos \theta)$, then $\left| {\cot \left( {\theta  - \frac{\pi }{4}} \right)} \right|$ is -

A

$\frac{1}{{\sqrt 7 }}$

B

$\sqrt 7$

C

$\frac{2}{{\sqrt 7 }}$

D

$2 \sqrt 7$

Solution

$\frac{\sin (\pi \sin \theta)}{\cos (\pi \sin \theta)}=\frac{\cos (\pi \cos \theta)}{\sin (\pi \cos \theta)}$

$\Rightarrow \cos (\pi \cos \theta+\pi \sin \theta)=0$

$\Rightarrow(\cos \theta+\sin \theta) \pi=\pm \frac{\pi}{2}$

$\Rightarrow \cos \theta+\sin \theta=\pm \frac{1}{2}$

$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\pm \frac{1}{2 \sqrt{2}}$

$\Rightarrow \cot \left(\theta-\frac{\pi}{4}\right)=\pm \frac{1}{\sqrt{7}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.