If $tan(\pi sin \theta)$ $= cot(\pi cos \theta)$, then $\left| {\cot \left( {\theta  - \frac{\pi }{4}} \right)} \right|$ is -

  • A

    $\frac{1}{{\sqrt 7 }}$

  • B

    $\sqrt 7$

  • C

    $\frac{2}{{\sqrt 7 }}$

  • D

    $2 \sqrt 7$

Similar Questions

The number of real solutions of the equation $2 \sin 3 x+\sin 7 x-3=0$, which lie in the interval $[-2 \pi, 2 \pi]$ is

  • [KVPY 2017]

If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is

Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$

$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.

  • [JEE MAIN 2022]

The set of values of $x$ satisfying the equation,${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$, is :

The number of solutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}$ in the interval $[0,2 \pi]$ is

  • [JEE MAIN 2021]