For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
infinitely many solutions
three solutions
one solution
no solution
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is
Let $P = \left\{ {\theta :\sin \,\theta - \cos \,\theta = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta + \cos \,\theta = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then
If $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ satisfies the equation $t ^{2}-9 t +8=0,$ then the value of $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ is