Trigonometrical Equations
easy

If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$

A

$\frac{{n\pi }}{3}$

B

$n\pi + \frac{\pi }{3}$

C

$2n\pi \pm \frac{\pi }{3}$

D

None of these

Solution

(a) $2\sin 3x\cos x – 2\sin 3x = 0$,

$\therefore $ $\sin 3x = 0$, $\cos x = 1$

$\Rightarrow 3x = n\pi $ or $x = \frac{{n\pi }}{3}$ and $x = 2n\pi $

The second value $x = 2n\pi $ is included in the value given by $x = \frac{{n\pi }}{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.