If $f$ is an even function defined on the interval $(-5, 5)$, then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are
$\frac{{ - 3 - \sqrt 5 }}{2},\frac{{ - 3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2}$
$\frac{{ - 5 + \sqrt 3 }}{2},\frac{{ - 3 + \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2}$
$\frac{{3 - \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2},\frac{{ - 3 - \sqrt 5 }}{2},\frac{{5 + \sqrt 3 }}{2}$
$ - 3 - \sqrt 5 , - 3 + \sqrt 5 ,3 - \sqrt 5 ,3 + \sqrt 5$
Let $f:(1,3) \rightarrow \mathrm{R}$ be a function defined by
$f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ where $[\mathrm{x}]$ denotes the greatest
integer $\leq \mathrm{x} .$ Then the range of $f$ is
Suppose $f(x) = {(x + 1)^2}$ for $x \ge - 1$. If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y = x$, then $g(x)$ equals
The function $f(x) =$ ${x^{\frac{1}{{\ln \,x}}}}$
Let $f(\theta ) = \sin \theta (\sin \theta + \sin 3\theta )$, then $f(\theta )$
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function which satisfies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R} .$ If $\mathrm{f}(1)=2$ and $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ then the value of $n,$ for which $\mathrm{g}(\mathrm{n})=20,$ is