If $f$ is an even function defined on the interval $(-5, 5)$, then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are
$\frac{{ - 3 - \sqrt 5 }}{2},\frac{{ - 3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2}$
$\frac{{ - 5 + \sqrt 3 }}{2},\frac{{ - 3 + \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2}$
$\frac{{3 - \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2},\frac{{ - 3 - \sqrt 5 }}{2},\frac{{5 + \sqrt 3 }}{2}$
$ - 3 - \sqrt 5 , - 3 + \sqrt 5 ,3 - \sqrt 5 ,3 + \sqrt 5$
The range of the function,
$\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$
$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ is :
Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is
The range of function $f : R \rightarrow R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is
Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.
If $f(a) = a^2 + a+ 1$ , then number of solutions of equation $f(a^2) = 3f(a)$ is