If $f$ is an even function defined on the interval $(-5, 5)$, then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are

  • A

    $\frac{{ - 3 - \sqrt 5 }}{2},\frac{{ - 3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2}$

  • B

    $\frac{{ - 5 + \sqrt 3 }}{2},\frac{{ - 3 + \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2},\frac{{3 - \sqrt 5 }}{2}$

  • C

    $\frac{{3 - \sqrt 5 }}{2},\frac{{3 + \sqrt 5 }}{2},\frac{{ - 3 - \sqrt 5 }}{2},\frac{{5 + \sqrt 3 }}{2}$

  • D

    $ - 3 - \sqrt 5 , - 3 + \sqrt 5 ,3 - \sqrt 5 ,3 + \sqrt 5$

Similar Questions

The range of the function,

$\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$

$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ is :

  • [JEE MAIN 2021]

Domain of the function $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ is

The range of function $f : R \rightarrow  R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is

Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.

  • [JEE MAIN 2022]

If $f(a) = a^2 + a+ 1$ , then number of solutions of equation $f(a^2) = 3f(a)$ is