Range of $f(x) = \;[x]\; - x$ is
$[0, 1]$
$(-1, 0]$
$R$
$(-1, 1)$
(b) As shown in graph
$ \Rightarrow $ Range is $(-1, 0].$
If $f(x)$ satisfies the relation $f\left( {\frac{{5x – 3y}}{2}} \right) = \frac{{5f(x) – 3f(y)}}{2}\forall x,y\, \in \,R$ and $f(0)=1, f'(0)=2$ then the period of $sin(f(x))$ is
Let $[x]$ denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $\mathrm{f}(\mathrm{x})=\sqrt{\frac{[\mathrm{x}] \mid-2}{\sqrt{[\mathrm{x}] \mid-3}}}$ is $(-\infty, \mathrm{a}) \cup[\mathrm{b}, \mathrm{c}) \cup[4, \infty), \mathrm{a}\,<\,\mathrm{b}\,<\,\mathrm{c}$, then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is:
Solve $|x\,-\,2| + |x\,-\,1| = x\,-\,3$
Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$ Then the number of elements in the set $C =\{ f : A \rightarrow B \mid 2 \in f ( A )$ and $f$ is not one-one $\}$ is
If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$ then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots \ldots . .+f\left(\frac{2022}{2023}\right)$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.